
Tim Williams | October 2018

Building a Program
from Streams

Sponsored by

What is a stream?

A potentially infinite sequence of data elements, processed incre-
mentally rather than as a whole.

• An abstraction that offers an alternative to mutable state.
• An abstraction that captures a programs interactions with the
outside world.

• Program with pure functions and (immutable) values.
• Components can be reasoned about in isolation and composed
safely.

A simple backup program

backup :: FilePath -> FilePath -> IO ()

backup src dest = do

files <- Dir.listDirectory src

forM_ files $ \file -> do

let src' = src </> file

dest' = dest </> file

isDir <- Dir.doesDirectoryExist src'

if isDir

then backup src' dest'

else do

Dir.createDirectoryIfMissing True dest

Dir.copyFile src' dest'

Can we make it modular?

• We want to break-up the previous monolithic program into
composable (and reusable) pieces.

• The resultant code should be easier to reason about, modify
and extend.

Enumerating directories for files

• What is the biggest issue with the following function?

enumDir :: FilePath -> IO [FilePath]

enumDir root = do

files <- Dir.listDirectory root

flip foldMap files $ \file -> do

let path = root </> file

isDir <- Dir.doesDirectoryExist path

if isDir

then enumDir path

else return [path]

• It has unbounded memory use! Monadic IO is strict, thus
sequencing an action of, e.g. IO [a], will fully evaluate the entire
output list in memory.

• We want to be able to write efficient bounded-space effectful
programs from a composition of smaller programs.

Parameterise with a callback?

• A simple and common solution seen in mainstream imperative
languages;

• but programs soon become difficult to reason about at scale.

enumDir :: FilePath -> (FilePath -> IO ()) -> IO ()

backup :: FilePath -> FilePath -> IO ()

backup src dest =

enumDir src $ \src' -> do

let dest' = dest </> relativise src src'

copyFile src' dest'

Lazy evaluation?

• Lazy evaluation does allow many (pure) pipeline compositions
to run efficiently one-element at-a-time, e.g. map f . map g has
similar efficiency to map (f . g).

BUT

• It has unpredictable space use,
if f :: [a] -> [b] and g :: [b] -> [c] is g . f space efficient?

• It does not work well when made to mix with effects.

The Lazy IO abomination

• The following has historically been used as a way to add lazy
evaluation to computations involving IO:

-- | unsafeInterleaveIO allows an IO computation to be deferred lazily.

-- When passed a value of type IO a, the IO will only be performed when

-- the value of the a is demanded.

unsafeInterleaveIO :: IO a -> IO a

However, such Lazy IO is highly problematic.

• Evaluating pure functions shouldn’t trigger IO!

• It is no longer clear where exceptions will be thrown or when file
handles will be released!

main = do

handle <- openFile ”foo.txt” ReadMode

contents <- hGetContents handle

hClose handle

putStr contents -- PRINTS NOTHING!

Effectful Streaming
ListT done right

• Can we add streaming to Monadic IO in a safer and more
principled fashion?

• Let’s start by generalising a linked-list to perform arbitrary
monadic actions:

-- List elements interleaved with effect m.

newtype ListT m a = ListT { runListT :: m (Step m a) }

deriving Functor

data Step m a

= Cons (a, ListT m a)

| Nil

deriving Functor

• We can define append and concat in a analogous fashion to
vanilla Lists:

instance Monad m => Monoid (ListT m a) where

mempty = ListT $ return Nil

mappend (ListT m) s' = ListT $ m >>= \case

Cons (a, s) -> return $ Cons (a, s `mappend` s')

Nil -> runListT s'

concat :: Monad m => ListT m (ListT m a) -> ListT m a

concat (ListT m) =

ListT $ m >>= \case

Cons (s, ss) -> runListT $ s `mappend` concat ss

Nil -> return Nil

• A monad instance lets us sequence actions using do notation:

instance Monad m => Monad (ListT m) where

return x = ListT $ return $ Cons (x, mempty)

-- (>>=) :: ListT m a -> (a -> ListT m b) -> ListT m b

s >>= f = concat $ fmap f s

• MonadTrans and MonadIO instances let us lift underlying and IO
monads respectively:

instance MonadTrans ListT where

lift m = ListT $ m >>= \x -> return (Cons (x, mempty))

instance MonadIO m => MonadIO (ListT m) where

liftIO m = lift (liftIO m)

• return is used to yield control and deliver a result.
• mapM_ can be used to evaluate the stream computation.

mapM_ :: Monad m => (a -> m ()) -> ListT m a -> m ()

mapM_ f (ListT m) = m >>= \case

Cons (a, s) -> f a >> mapM_ f s

Nil -> return ()

• Define Stream' a as an incremental on-demand computation
built upon IO:

type Stream' a = ListT IO a

• Stream' a is similar in expressiveness to the Iterable<A> in Java or
IEnumerable<A> in C#/F#.

Example

λ> return 1 <> return 2 <> return 3 :: ListT Identity Int

ListT (Identity (Cons (1,ListT (Identity (Cons (2,

ListT (Identity (Cons (3,ListT (Identity Nil))))))))))

• We can now write the following pipeline composition:

backup :: FilePath -> FilePath -> IO ()

backup src dest

= copyFiles src dest

. fmap (relativise src)

$ enumDir src

copyFiles :: FilePath -> FilePath -> Stream' FilePath -> IO ()

enumDir :: FilePath -> Stream' FilePath

copyFiles :: FilePath -> FilePath -> Stream' FilePath -> IO ()

copyFiles src dest =

Stream.mapM_ $ \file -> do

Dir.createDirectoryIfMissing True dest

Dir.copyFile (src </> file) (dest </> file)

enumDir :: FilePath -> Stream' FilePath

enumDir dir = do

files <- liftIO $ Dir.listDirectory dir

flip foldMap files $ \file -> do

let absFile = dir </> file

exists <- liftIO $ Dir.doesDirectoryExist absFile

if exists

then enumDir absFile

else return absFile

Problems

• No final return value, which makes it impossible to implement
streaming versions of many common list operations, e.g.
splitAt.

• Wemay want to parameterise the hard-coded functor (a,) in
order to correctly implement a Stream-of-Streams (e.g. for
chunksOf) and other additional features.

A better Stream type

• Stream f m r is a succession of steps, each with a structure
determined by f, arising from actions in the monad m, and
returning a value of type r.

newtype Stream f m r = Stream { runStream :: m (Step f m r) }

deriving Functor

data Step f m r

= Wrap (f (Stream f m r))

| Return r

deriving Functor

• Note that Stream f m r is isomorphic to FreeT f m r, the free monad
transformer. This abstraction is not adhoc!

• The "streamed functor" Of a is just the left-strict pair:

data Of a r = !a :> r

• A yield primitive is used to suspend control and deliver a result:

yield :: Monad m => a -> Stream (Of a) m ()

yield a = Stream . return $ Wrap (a :> return ())

• Note the bind (>>=) is concat, rather than concatMap. The
stream s >>= \r -> s' is the stream of values produced by s,
followed by the stream of values produced by s'.

instance (Functor f, Monad m) => Monad (Stream f m) where

return = Stream . return . Return

s >>= f = Stream $ runStream s >>= \case

Wrap fs' -> return . Wrap $ fmap (>>=f) fs'

Return x -> runStream $ f x

instance MonadTrans (Stream a) where

lift = Stream . liftM Return

• mapM_ is similar to previous implementations and can be used to
evaluate the stream:

mapM_ :: Monad m => (a -> m ()) -> Stream (Of a) m r -> m r

mapM_ f s = runStream s >>= \case

Wrap (a :> s') -> f a >> mapM_ f s'

Return x -> return x

Example

λ> S.yield 1 >> S.yield 2 >> S.yield 3 :: Stream (Of Int) Identity ()

Stream (Identity (Wrap (1 :> Stream (Identity (Wrap (2 :>

Stream (Identity (Wrap (3 :> Stream (Identity (Return ())))))))))))

Haskell streaming package

The streaming Hackage package implements essentially the same
Stream type in a manner that is efficient for GHC. It includes a
comprehensive Prelude of list-like operations.

import Streaming

import qualified Streaming.Prelude as S

data Stream f m r

= Return r

| Step !(f (Stream f m r))

| Effect (m (Stream f m r))

yield :: Monad m => a -> Stream (Of a) m ()

yield a = Step (a :> Return ())

The return type and parameterised functor allow streaming variants
of the common list functions splitAt and chunksOf respectively:

splitAt

:: (Monad m, Functor f)

=> Int -> Stream (Of a) m r -> Stream (Of a) m (Stream (Of a) m r)

chunksOf

:: (Monad m, Functor f)

=> Int -> Stream f m r -> Stream (Stream f m) m r

Atavachron

Atavachron is an example of a large and full-featured backup
program developed using the streaming package1.

https://github.com/willtim/Atavachron

The definitions for the main top-level pipelines can be found here.

1Note that Atavachron is still under development and not yet ready for
widespread use.

https://github.com/willtim/Atavachron
https://github.com/willtim/Atavachron/blob/master/src/Atavachron/Pipelines.hs

Tips
• Streaming is a good fit for the large-scale architecture of an
application, but not for fine-grained performance critical
sections, i.e. Stream Word8 is not good practice.

• Parallelism often means sacrificing ordering, either the
ordering of the elements or ordering of the effects. Element
ordering can be recovered at the expense of additional space
and time.

• Synchronous streams may make more sense with some
complex pipeline requirements. Synchronous streams allow for
parallel composition f *** g and Arrow combinators for building
"circuits".

• Automatic releasing of file handles and other finite resources
can be achieved by layering the ResourceT and/or Managed
monad transformers. Prompt finalisation remains an issue.

Advanced libraries

• The state-of-the-art in Haskell streaming is currently embodied
by Iteratee and its variants, which offer:

• two way communication
• prompt finalisation
• "backpressure"
• buffering
• concurrency

• Pipes and Conduits are popular variations of the idea, they
provide abstract APIs which help ensure streams are used
correctly (i.e. enforcing linearity, no discarding or duplicating),
but are somewhat complex to use.

• In the future, Linear types may offer safe use with less complex
and abstract interfaces.

Summary

• Streaming is a fundamental abstraction and key to building
many real-world applications.

• There is no one-size fits all streaming library. They are all a
trade-off between ease of use and features.

• Understanding ListT and Stream (a.k.a. FreeT) will help to
understand all approaches.

• The streaming Hackage package strikes a good balance between
simplicity and practicality.

The slides for this talk will be available at:
http://www.timphilipwilliams.com/slides/streaming.pdf

http://www.timphilipwilliams.com/slides/streaming.pdf

