LGENERATING CASTLES FOR

Gl A5 PS vsme YsHaskell

TIMWILLIAMS QOLTOEBER 2018

THE BRSIC IDER

« A Domain-specific language (DSL) that targets Minecraft
"mcfunction” files and "setblock" commands.

» A compositional language that makes it easy to assemble
complex structures from simple ones.

» A shallow embedding inside Haskell, leveraging Haskell’s
expressiveness and abstractions.

A DOMAIN-SPELIFIC LANGUAGE

» DSLs offer naming, semantics and abstractions that
match the problem domain.

 This one is hopefully usable by anyone familiar with basic
functions and 3D Cartesian coordinates.

DATA TYPES

» The basic atom in Minecraft is the block.

« All blocks have coordinates and a kind (e.g. air,
cobblestone, water).

» Coordinates assumed to be relative.

data Block = Block
{ _blockCoord :: Coord
, _blockKind :: String
}

data Coord = Coord { _x :: Int, _y :: Int, _z :: Int }
deriving (Ord, Eq)

makeLenses ''Coord

makeLenses ''Block

» Minecraft structures are represented as an ordered list of
blocks.

» Use a newtype to hide the underlying representation.

newtype Blocks = Blocks { unBlocks :: [Block] }

deriving (Semigroup, Monoid, Show)

mkBlocks :: [Coord] -> Blocks

mkBlocks = Blocks . map (\c -> Block c cobblestone)

-- | A block of nothing (air) at the origin (0,0,0)
zero :: Blocks

zero = Blocks [Block (Coord © © ©) air Nothing]

We set the kind of block using an infix # operator:

-- | Set the kind of all blocks

infixr 8 #

(#) :: Blocks -> Kind -> Blocks

(#) blocks k = mapKind (const k) blocks

mapKind :: (Kind -> Kind) -> Blocks -> Blocks

mapKind f = mapBlocks $ over blockKind f

mapBlocks :: (Block -> Block) -> Blocks -> Blocks

mapBlocks f = Blocks . map f . unBlocks

A HOH-COMMUTATIVE HOKOID

 Blocks are combined using a monoid instance, derived
using the underlying list instances.

* The s1ocks monoid is non-commutative, the right-hand-side
overrides the left.

zero <> (zero # cobblestone) -- results in a cobblestone block at (0,0,8)

(zero # cobblestone) <> zero -- results in nothing (an air block) at (0,0,0)

LENSES FOR DIMENSIONS

» Abstract over dimensions using lenses.

« Any function that requires both reading and updating a
dimension needs only one parameter.

type Dimension = Lens' Coord Int

view :: Lens' a b ->a ->b
over :: Lens' ab -> (b ->b) ->a->a

set :: Lens' a b -> b ->a->a

REPETITION AHD LAYOUT

To build composite structures, we use combinators that
provide us with repetition and layout:

-- | Repeat structure 'n' times with function 'f' applied iteratively.
repeat :: (Blocks -> Blocks) -> Int -> Blocks -> Blocks

repeat f n = mconcat . take n . iterate f

-- | replicate structure 'n' times with a spacing 's' in dimension 'd'.
replicate :: Dimension -> Int -> Int -> Blocks -> Blocks

replicate d s = repeat (move d s)

-- | Move blocks by 'i' in dimension 'd’
move :: Dimension -> Int -> Blocks -> Blocks

move d i = mapBlocks $ over (blockCoord . d) (+1)

-- | Translate blocks by the supplied 'x, y, z' offset.
translate :: Int -> Int -> Int -> Blocks -> Blocks

translate x' y' z' = move x x' . move y y' . move z z'

WHLLS AND FLOORS

-- | Create a Line of cobblestone blocks with Length 'n' along dimension 'd'.

line :: Dimension -> Int -> Blocks

line d n = replicate d 1 n zero # cobblestone

-- | A wall of cobblestone with width 'w', height 'h', along dimension 'd'.

wall :: Dimension -> Int -> Int -> Blocks

wall d w h = replicate y 1 h $ line d w

-- | A wooden floor with Lengths 'Lx' and
floor" :: Int -> Int -> Blocks
floor' 1x 1z

= replicate x 1 1x

. replicate z 1 1z

$ zero # oak_planks

wall x 9 4

"Lz".

CIRCLES

-- | A circle of radius r in the plane formed by dimensions (d, d'),
-- centered on the origin.
circle :: Dimension -> Dimension -> Int -> Int -> Blocks
circle d d' r steps =
mkBlocks [set d x . set d' z $ Coord © © ©
| s <- [1..steps]
, let phi = 2*pi*fromIntegral s / fromIntegral steps ::Double

z = round $ fromIntegral r * cos phi

X

round $ fromIntegral r * sin phi

CYLINDERS

-- | A hollow cylinder of radius r in the plane formed by dimensions (d, d')
-- and with length along dL.
cylinder
:: Dimension -> Dimension -> Dimension -> Int -> Int -> Int
-> Blocks
cylinder d d' dl r h steps =
replicate d1 1 h (circle d d' r steps)

cylinder x z y 10 40 500

-- | An upright hollow cone in the (x,z) plane, with radius r and height h,
-- centered on the origin.
cone :: Int -> Int -> Int -> Blocks
cone r h steps = mconcat
[mve y y' $ circle x z r' steps
| y' <- [0..h]
, let r' = round $ fromIntegral (r*(h-y')) / (fromIntegral h::Double)
]

cone 20 20 1000

SPIRALS

-- | An upward spiral in the (x,z) plane with radius r and height h

-- using rev revolutions, centered on the origin.

spiral :: Int -> Int -> Int -> Int -> Blocks

spiral r h revs steps

mkBlocks [Coord x y z

| s <- [1..steps]

, let phi
z

X

y

2*pi*fromIntegral (revs*s) / fromIntegral steps
round $ fromIntegral r * cos phi
round $ fromIntegral r * sin phi

round $ fromIntegral (h*s) / (fromIntegral steps

::Double

: :Double)

-- | A spiral staircase in the (x,z) plane with radius r, thickness t
-- and height h using rev revolutions, centered on the origin.
spiralStairs
:: Int -> Int -> Int -> Int -> Int
-> Blocks
spiralStairs r t h revs steps = mconcat
[spiral (r-i) h revs steps
| i< [0..t-1]
]

spiralStairs 10 12 80 6 1000

LRID LAYOUTS

A grid layout combinator is particularly useful, especially for
castles.

grid :: Int -> [[Blocks]] -> Blocks
grid spacing = f z . map (f x)
where
f :: Dimension -> [Blocks] -> Blocks

f d = foldr (\a b -> a <> move d spacing b) mempty

Finally, we need a "render" function for generating the
command file:

data CoordKind = Relative | Absolute

render :: FilePath -> String -> String -> CoordKind -> Blocks -> I0 ()

render minecraftDir levelName functionName coordKind (prune -> blocks) = ...

SCALING UP TO CASTLES

 Castles are just monoidal compositions of the
aforementioned components.

- Start with abstract components. e.g. solidCircle, then
make more concrete specific variants, e.g. circularFloor.

 Higher-order functions useful to parameterise
components, e.g. the style of turret.

« Components are more reusable when sizes have been
parameterised, e.g. widths, lengths, radii.

englishCastle :: Blocks
englishCastle = mconcat
[castleWall 100{-width-} 10{-height-}
, grid 50 {-spacing-}
[[t, t, t]
, [t k, t]
> [t g t11]
where
t = circularTurret 4{-radius-} 15{-height-} 20
t' = circularTurret 3{-radius-} 15{-height-} 20
k = castleKeep t' 24{-width-} 15{-height-}

g =move x (-12) t <> move x 12 t -- gatehouse entrance

CASTLES ~ MOS5Y ENLLISH

CASTLES ~ GERMANIL

CASTLES ~ DESERT

THAT'S ALL FOLKS!

The slides for this talk will be available at:
http://www.timphilipwilliams.com/slides/minecraft.pdf

The original blog post with source code:

http://www.timphilipwilliams.com/posts/2019-07-25-
minecraft.html

For anyone that wants to collaborate, the combinators have
been donated to this project:

https://github.com/stepcut/minecraft-data

http://www.timphilipwilliams.com/slides/minecraft.pdf
http://www.timphilipwilliams.com/posts/2019-07-25-minecraft.html
http://www.timphilipwilliams.com/posts/2019-07-25-minecraft.html
https://github.com/stepcut/minecraft-data

