
Tim Williams October 2019

Generating castles for

using

The basic idea

• A Domain-specific language (DSL) that targets Minecraft
"mcfunction" files and "setblock" commands.

• A compositional language that makes it easy to assemble
complex structures from simple ones.

• A shallow embedding inside Haskell, leveraging Haskell’s
expressiveness and abstractions.

A domain-specific language

• DSLs offer naming, semantics and abstractions that
match the problem domain.

• This one is hopefully usable by anyone familiar with basic
functions and 3D Cartesian coordinates.

Data types

• The basic atom in Minecraft is the block.

• All blocks have coordinates and a kind (e.g. air,
cobblestone, water).

• Coordinates assumed to be relative.

data Block = Block

{ _blockCoord :: Coord

, _blockKind :: String

}

data Coord = Coord { _x :: Int, _y :: Int, _z :: Int }

deriving (Ord, Eq)

makeLenses ''Coord

makeLenses ''Block

• Minecraft structures are represented as an ordered list of
blocks.

• Use a newtype to hide the underlying representation.

newtype Blocks = Blocks { unBlocks :: [Block] }

deriving (Semigroup, Monoid, Show)

mkBlocks :: [Coord] -> Blocks

mkBlocks = Blocks . map (\c -> Block c cobblestone)

-- | A block of nothing (air) at the origin (0,0,0)

zero :: Blocks

zero = Blocks [Block (Coord 0 0 0) air Nothing]

We set the kind of block using an infix # operator:

-- | Set the kind of all blocks

infixr 8 #

(#) :: Blocks -> Kind -> Blocks

(#) blocks k = mapKind (const k) blocks

mapKind :: (Kind -> Kind) -> Blocks -> Blocks

mapKind f = mapBlocks $ over blockKind f

mapBlocks :: (Block -> Block) -> Blocks -> Blocks

mapBlocks f = Blocks . map f . unBlocks

A Non-commutativeMonoid

• Blocks are combined using a monoid instance, derived
using the underlying list instances.

• The Blocks monoid is non-commutative, the right-hand-side
overrides the left.

zero <> (zero # cobblestone) -- results in a cobblestone block at (0,0,0)

(zero # cobblestone) <> zero -- results in nothing (an air block) at (0,0,0)

Lenses for dimensions

• Abstract over dimensions using lenses.

• Any function that requires both reading and updating a
dimension needs only one parameter.

type Dimension = Lens' Coord Int

view :: Lens' a b -> a -> b

over :: Lens' a b -> (b -> b) -> a -> a

set :: Lens' a b -> b -> a -> a

Repetition and layout

To build composite structures, we use combinators that
provide us with repetition and layout:

-- | Repeat structure 'n' times with function 'f' applied iteratively.

repeat :: (Blocks -> Blocks) -> Int -> Blocks -> Blocks

repeat f n = mconcat . take n . iterate f

-- | replicate structure 'n' times with a spacing 's' in dimension 'd'.

replicate :: Dimension -> Int -> Int -> Blocks -> Blocks

replicate d s = repeat (move d s)

-- | Move blocks by 'i' in dimension 'd'.

move :: Dimension -> Int -> Blocks -> Blocks

move d i = mapBlocks $ over (blockCoord . d) (+i)

-- | Translate blocks by the supplied 'x, y, z' offset.

translate :: Int -> Int -> Int -> Blocks -> Blocks

translate x' y' z' = move x x' . move y y' . move z z'

Walls and floors

-- | Create a line of cobblestone blocks with length 'n' along dimension 'd'.

line :: Dimension -> Int -> Blocks

line d n = replicate d 1 n zero # cobblestone

-- | A wall of cobblestone with width 'w', height 'h', along dimension 'd'.

wall :: Dimension -> Int -> Int -> Blocks

wall d w h = replicate y 1 h $ line d w

-- | A wooden floor with lengths 'lx' and 'lz'.

floor' :: Int -> Int -> Blocks

floor' lx lz

= replicate x 1 lx

. replicate z 1 lz

$ zero # oak_planks

wall x 9 4

Circles

-- | A circle of radius r in the plane formed by dimensions (d, d'),

-- centered on the origin.

circle :: Dimension -> Dimension -> Int -> Int -> Blocks

circle d d' r steps =

mkBlocks [set d x . set d' z $ Coord 0 0 0

| s <- [1..steps]

, let phi = 2*pi*fromIntegral s / fromIntegral steps ::Double

z = round $ fromIntegral r * cos phi

x = round $ fromIntegral r * sin phi

]

Cylinders

-- | A hollow cylinder of radius r in the plane formed by dimensions (d, d')

-- and with length along dl.

cylinder

:: Dimension -> Dimension -> Dimension -> Int -> Int -> Int

-> Blocks

cylinder d d' dl r h steps =

replicate dl 1 h (circle d d' r steps)

cylinder x z y 10 40 500

Cones

-- | An upright hollow cone in the (x,z) plane, with radius r and height h,

-- centered on the origin.

cone :: Int -> Int -> Int -> Blocks

cone r h steps = mconcat

[move y y' $ circle x z r' steps

| y' <- [0..h]

, let r' = round $ fromIntegral (r*(h-y')) / (fromIntegral h::Double)

]

cone 20 20 1000

Spirals

-- | An upward spiral in the (x,z) plane with radius r and height h

-- using rev revolutions, centered on the origin.

spiral :: Int -> Int -> Int -> Int -> Blocks

spiral r h revs steps =

mkBlocks [Coord x y z

| s <- [1..steps]

, let phi = 2*pi*fromIntegral (revs*s) / fromIntegral steps ::Double

z = round $ fromIntegral r * cos phi

x = round $ fromIntegral r * sin phi

y = round $ fromIntegral (h*s) / (fromIntegral steps::Double)

]

-- | A spiral staircase in the (x,z) plane with radius r, thickness t

-- and height h using rev revolutions, centered on the origin.

spiralStairs

:: Int -> Int -> Int -> Int -> Int

-> Blocks

spiralStairs r t h revs steps = mconcat

[spiral (r-i) h revs steps

| i <- [0..t-1]

]

spiralStairs 10 12 80 6 1000

Grid Layouts

A grid layout combinator is particularly useful, especially for
castles.

grid :: Int -> [[Blocks]] -> Blocks

grid spacing = f z . map (f x)

where

f :: Dimension -> [Blocks] -> Blocks

f d = foldr (\a b -> a <> move d spacing b) mempty

Rendering

Finally, we need a "render" function for generating the
command file:

data CoordKind = Relative | Absolute

render :: FilePath -> String -> String -> CoordKind -> Blocks -> IO ()

render minecraftDir levelName functionName coordKind (prune -> blocks) = ...

Scaling up to Castles

• Castles are just monoidal compositions of the
aforementioned components.

• Start with abstract components. e.g. solidCircle, then
make more concrete specific variants, e.g. circularFloor.

• Higher-order functions useful to parameterise
components, e.g. the style of turret.

• Components are more reusable when sizes have been
parameterised, e.g. widths, lengths, radii.

englishCastle :: Blocks

englishCastle = mconcat

[castleWall 100{-width-} 10{-height-}

, grid 50 {-spacing-}

[[t, t, t]

, [t, k, t]

, [t, g, t]]]

where

t = circularTurret 4{-radius-} 15{-height-} 20

t' = circularTurret 3{-radius-} 15{-height-} 20

k = castleKeep t' 24{-width-} 15{-height-}

g = move x (-12) t <> move x 12 t -- gatehouse entrance

Castles /Mossy English

Castles / Germanic

Castles / Desert

That’s all folks!

The slides for this talk will be available at:
http://www.timphilipwilliams.com/slides/minecraft.pdf

The original blog post with source code:
http://www.timphilipwilliams.com/posts/2019-07-25-
minecraft.html

For anyone that wants to collaborate, the combinators have
been donated to this project:
https://github.com/stepcut/minecraft-data

http://www.timphilipwilliams.com/slides/minecraft.pdf
http://www.timphilipwilliams.com/posts/2019-07-25-minecraft.html
http://www.timphilipwilliams.com/posts/2019-07-25-minecraft.html
https://github.com/stepcut/minecraft-data

