
Haskell at Barclays:
Exotic tools for exotic trades

Tim Williams | 5 December 2013

Introduction

Exotic equity derivative contracts come in a variety of structures and clients
are continually requesting new ones. In order to remain competitive and
meet regulatory requirements, Barclays needs to:

• bring new products to market rapidly and efficiently
• manage the resulting highly heterogeneous trade population

This talk summarises Going functional on exotic trades, by Frankau,
Spinellis, Nassuphis and Burgard [1] and gives an update on the project and
some of the techniques we use.

1

Options

An equity option is a derivative contract giving the owner the right, but not
the obligation, to buy (call) or sell (put) an underlying stock asset at the
specified strike price, on or before a specified date.

• For a strike price equal to the initial stock price (at the money):

• a call pays the price difference if the stock goes up, or zero otherwise
• a put pays the price difference if the stock goes down, or zero otherwise

• Options are popular with investors due to their minimal downside,
leverage and hedging potential.

2

Vanilla Options

Pcall = Nmax(S(tT)/S(t0)− k, 0) (1)

Pput = Nmax(k − S(tT)/S(t0), 0) (2)

where P is the payoff, N is the notional, k is the strike and S(t) is the price
of the underlying at time t.

3

Long call

-1

0

1

0 1 2

p
a

yo
ff

 /
 N

asset performance S(t) / S(t0)

k = 1

4

Long put

-1

0

1

0 1 2

p
a

yo
ff

 /
 N

asset performance S(t) / S(t0)

k = 1

5

Exotics
• Baskets

• an option on a portfolio of underlyings

• Compound options
• Options on other options, e.g. a call on a call

• Time dependent options
• Forward start options–option that start at some time in the future
• Chooser options–buyer or seller may choose when to early redeem

• Path dependent options
• barrier options–payout locked-in when underlying hits trigger
• lookback options–payout based on highest or lowest price during the

lookback period
• Asian options–payout derived from average value of underlying over a

specified window
• Autocallables–will early redeem if a particular barrier condition is met

6

Trade Lifecycle

• Sales interact with the customers
• Structurers create new products, often on customer request
• Quants provide mathematical models and formal description of trades

(payout functions)
• Risk management validate and sign-off the payout functions
• Traders derive the final price, manage the trade over its lifetime and

analyse upcoming events
• Payments systems handle payment events throughout the lifetime of

the trade

7

The Functional Payout Framework

• A standardized representation for describing payoffs
• A common suite of tools for trades which use this representation

• UI for providing trade parameters
• mathematical document descriptions
• pricing and risk management
• barrier analysis
• payments and other lifecycle events

• A Haskell EDSL for authoring trade types

• purely functional and declarative
• strong static typing
• produces abstract syntax–allowing multiple interpretations
• composition of payoffs is just function composition!

8

FPF EDSL

FPF Tools Deployments

Trade Type (Script)

Schemas

Trade Parameters (Static)

MC Backend

LaTeX Backend

Payments

BarriersTrade Fixings (Dynamic)

MC Pricing

Document

UI

Reports

9

An FPF payoff contract is represented by a function whose domain is the
observed asset values and whose codomain is a set of payments on different
dates:

{(Asset,Date,Double)} → {Payment} (3)

10

Example: a call option

-- TRADETYPE: callDemo_v1
-- TAG: DEV
-- DESC: A long call.
callDemo_v1
(name ”Asset” -> asset
, name ”Strike” -> k
, name ”In date” -> inDate
, name ”Out date” -> outDate
, name ”Pmt date” -> pmtDate
)
= payAtDate pmtDate (max 0 (st / s0 - k))
where

st = observe asset outDate
s0 = observe asset inDate

....payAtDate.....

..max.....

..0

.

..

..(-).....

..k

.

..

..(/).....

..observe.....

..inDate.

..

..asset.

..

..observe.....

..outDate.

..

..asset

.

..

..pmtDate

11

Trade parameters (FPF String)

callDemo_v1 (“BARX”, 1-Dec-2013, 1-Dec-2014, 3-Dec-2008)

Trade fixings

[(“BARX”, Close, 1-Dec-2013, 280.1)]

12

Example: a Cliquet
cliquetDemo_v2
(name ”Asset” -> asset
, name ”Global floor” -> gf
, name ”Global cap” -> gc
, name ”Local floor” -> lf
, name ”Local cap” -> lc
, name ”Initial date” -> inDate
, name ”Dates” -> dates
, name ”Payment date” -> payDate
)
= max gf $ min gc $ sum perfs
where

cliquet d d’ = (d’, max lf $ min lc $ perf d d’ asset)
(_, perfs) = mapAccumL cliquet inDate dates

13

CliquetDemo_v2 Documentation

pay

t
PD
, min

GC, max

GF, len(tD)∑
i=1

min

LC, max

LF, STOP
(
tDi

)
STOP

(
ai−1

)







where

a0 = t
ID

ai = t
D
i

The parameters to this trade type are as follows:

Variable Description Type
TOP Top-level input Tuple of (STOP, GF, GC, LF, LC, tID, tD, tPD)
STOP Asset Asset
GF Global floor Double
GC Global cap Double
LF Local floor Double
LC Local cap Double
tID Initial date Date
tD Dates List of Date
tPD Payment date Date

14

EDSLs: Deep Embedding
• A deeply embedded DSL yields an abstract-syntax-tree (AST) upon

evaluation
• We can then analyse the AST and extract the necessary information

data Exp
= EVar VarId
| EConst Double
| EAsset Name
| EDate Date
| EObserve Exp Exp
| EPayAtDate Exp Exp
| EAdd Exp Exp
...
deriving (Eq, Ord, Show)

15

Overloading Literals

instance Num Exp where
(+) = EAdd
fromInteger = EConst . fromInteger

instance Fractional Exp where
fromRational = EConst . fromRational

16

λ> 1 + 2 + 3 :: Exp
EAdd (EAdd (EConst 1.0) (EConst 2.0)) (EConst 3.0)

....EAdd.....

..EConst...

..3.0

.

..

..EAdd.....

..EConst...

..2.0.

..

..EConst...

..1.0

17

Functions

• Function/lambda syntax cannot be overloaded in Haskell;
• but we can reify them:

f (x, y) = x + y

λ> f (EVar ”x”, EVar ”y”)
EAdd (EVar ”x”) (EVar ”y”)

18

Lists

• Lists in FPF have two main uses:

• contractual data of varying length, e.g. a basket of assets
• control flow, e.g. stepping forward through a list of observation dates

• FPF has Map, Foldl, Foldr and MapAccumL primitives

data Exp = ...
| EFoldl Fun2 Exp [Exp]

type Fun2 = (VarId, VarId, Exp)

19

foldl f a xs = EFoldl (lambdaToFun2 f) a xs

lambdaToFun2 :: (Exp -> Exp -> Exp) -> Fun2
lambdaToFun2 f =
(EVar 0, EVar 1, f (EVar 0) (EVar 1))

Note that we must take care to avoid name capture!

20

Types

• prove that certain classes of errors do no exist
• offer a form of machine-checked documentation to guide the user

We can use type parameters to constrain the types of terms that can be
constructed. For example, using a phantom type:

newtype E t = E Exp

payAtDate :: E Date -> E Double -> E Payment
...

21

Datatype Generic Programming

A form of abstraction that allows defining a single function over a class of
datatypes.

• generic functions depend only on the structure
or shape of the datatype

• useful for large complex data-types, where
traversal code often dominates

• for recursion schemes, we can capture
the pattern as a standalone combinator

22

Scrap-Your-Boilerplate (SYB)

Generic programming frameworks differ in the mechanism used to access
the underlying structure of a datatype.

In our first foray into generic programming, we tried SYB [4], an extremely
powerful generics framework, but we were not entirely satisfied:

• performance was significantly worse than non-generic traversal code
• all datatypes needed Data and Typeable instances
• we lost type safety in some areas, for example traversals accept any

datatype with a Data instance

23

Fixed points of Functors

An idea from category theory[3] which gives:

• data-type generic functions
• compositional data

-- | the least fixpoint of functor f
newtype Fix f = Fix { unFix :: f (Fix f) }

A functor f is a data-type of kind * -> * together with an fmap function.

Fix f ∼= f(f(f(f(f...etc (4)

24

Catamorphisms

A catamorphism (cata meaning “downwards”) is a generalisation of the
concept of a fold.

• models the fundamental pattern of (internal) iteration
• a catamorphism will traverse bottom-up, however top-down or a

combination is possible using a function codomain
• category theory shows us how to define it data-type generically for a

functor fixed-point

cata :: Functor f => (f a -> a) -> Fix f -> a
cata alg = alg . fmap (cata alg) . unFix

25

Catamorphism

..f (Fix f).

Fix f

. f a.

a

. fmap (cata alg).

Fix

.

cata alg

.

alg

26

Example pattern functor

data ExpF r type Exp = Fix ExpF
= EVar VarId
| EConst Double
| EAsset Name
| EDate Date
| EObserve r r
| EPayAtDate r r
| EAdd r r
| EMax r r
...
deriving (Show, Eq, Ord

, Functor, Foldable, Traversable
)

27

Example catamorphisms

-- | collect up all the observation dates
obsDates :: Exp -> Set Date
obsDates = cata alg where
alg :: ExpF (Set Date) -> Set Date
alg (EDate i) = S.singleton i
alg e = fold e

-- | substitute variables using the supplied environment
substitute :: Map VarId (ExpF Exp) -> Exp -> Exp
substitute env = cata alg where
alg :: ExpF Exp -> Exp
alg (EVar i) | Just e <- M.lookup i env = Fix e
alg e = Fix e

28

Recovering Sharing

The following Haskell expression:

let y = f x in y + y

is represented internally as a graph:

..

+

.fx

29

However, when evaluating the expression, we get:

..

+

. fx. fx

If we were to evaluate this AST, fx would be evaluated twice!

30

Sharing can be captured explicitly in a tree representation by using “let”
forms:

..

let

.

y

.

fx

.

+

. y. y.

let

.

=

.

in

31

Two complementary forms of sharing

• Implicit sharing–common sub-expression elimination

• an optimisation
• non-trivial to preserve evaluation semantics in the presence of

side-effects
• FPF relies upon implicit sharing for compilation of lists

• Explicit sharing–sharing explicitly declared by users

• Naïve use of let-forms in EDSLs leads to code explosion
• observable sharing via GHC’s internal unsafe operations can be used to

recover the graph structure
• FPF does not (currently) support explicit sharing, in order to avoid the

complexity of working with let-forms or graphs

32

Stable names

“Stable names” in Haskell are intended for fast O(1) equality and hashing
under IO, but can be used to recover explicit sharing in the source code.

For example, using Andy Gill’s Data.Reify[2]:

f :: Exp -> Exp
f x = let y = x + x in y + y

λ> reifyGraph $ f (Fix $ EVar ”x”)
let [(1,EAdd 2 2),(2,EAdd 3 3),(3,EVar ”x”)] in 1

33

Hash-consing

• a space optimisation

• at the time of construction, we hold a hash-map of previously
constructed expressions and look them up.

• if a previous instance exists, we return it, tagged with a unique id;
• otherwise, we add to the hash-map the new expression with a new

generated unique id.

• the uniques enable fast O(1) comparisons and hash calculations
requiring only a single level of depth.

• unlike pointer equality, the uniques represent structural equality, even
if the same expression is constructed with a different constructor
invocation

34

-- | Hash-consing for any functor f
data HCF f r = HCF (f r) !Unique

type HC f = Fix (HCF f)
type HCExp = HC ExpF

type HCMap = HashMap (ExpF HCExp) HCExp
type HCM a = State (HCMap, Int) a

runHCM :: HCM a -> a
runHCM m = evalState m (HM.empty, 0)

35

• use mkHC and unHC in place of Fix and unFix respectively

mkHC :: ExpF HCExp -> HCM HCExp
mkHC e = do
v <- lookup e
case v of

Just e’ -> return e’
Nothing -> do

u <- newUnique
let e’ = Fix $ HCF e u
insert e e’
return e’

unHC :: Functor f => HC f -> f (HC f)
unHC (unFix -> HCF e _) = e

36

-- uniques used for fast O(1) equality tests on HCExp
instance Eq (HCF f r) where
(HCF _ u) == (HCF _ u’) = u == u’

-- uniques used for fast hashing (to first depth level only)
instance Hashable (ExpF HCExp) where
hashWithSalt s (EConst c)

= 1 ‘hashWithSalt‘ s ‘hashWithSalt‘ c
hashWithSalt s (EAdd (Fix (HCF _ u)) (Fix (HCF _ u’)))

= 2 ‘hashWithSalt‘ s ‘hashWithSalt‘ (u, u’)
...

37

• in this example, the separately constructed expressions are
represented as one instance, with unique 1.

e1 = do
x <- mkHC $ EVar ”x”
y <- mkHC $ EVar ”x”
mkHC $ EAdd x y

λ> runHCM e1
Fix (HCF (EAdd (Fix (HCF (EVar ”x”) 1))

(Fix (HCF (EVar ”x”) 1))) 2)

38

• traversals must be monadic, but customised recursion combinators
can at least handle the HC annotation unwrapping for us:

cataM :: (Monad m, Traversable f) =>
(f a -> m a) -> HC f -> m a

cataM algM = algM <=< mapM (cataM algM) . unHC

substitute :: M.Map VarId (ExpF HCExp) ->
HCExp ->
HCM HCExp

substitute env = cataM alg where
alg :: ExpF HCExp -> HCM s HCExp
alg (EVar i) | Just e <- M.lookup i env = mkHC e
alg e = mkHC e

39

unsafePerformIO

• we may take the view that hash-consing, an optimisation, is not state
that we wish to make explicit and that it can be made essentially pure
from the outside

• for better or worse, FPF takes the unsafePerformIO with IORef
approach to Hash-consing. This is not to avoid monad traversals, but
to avoid sequencing each and every hash-cons (mkHC)

• it is not without uglyness–we need a function of type IO () to clear
the dictionary

40

Memoization

• memoization, or caching, lets us trade space for time where necessary

• since we restrict recursion to a library of standard combinators, we can
define memoizing variants that can easily be swapped in

• the simplest (pure) memoize function requires some kind of
Enumerable context

memoize :: Enumerable k => (k -> v) -> k -> v

41

A monadic codomain allows us to use e.g. an underlying State monad:

memoize :: Memo k v m => (k -> m v) -> k -> m v
memoize f x = lookup x >>= (‘maybe‘ return)
(f x >>= \r -> insert x r >> return r)

memoFix :: Memo k v m =>
((k -> m v) -> k -> m v) -> k -> m v

memoFix f = let mf = memoize (f mf) in mf

class Monad m => Memo k v m | m -> k, m -> v where
lookup :: k -> m (Maybe v)
insert :: k -> v -> m ()

42

The following runs the memoized computations using a HashMap (Memo
instance required):

type MemoMT k v m a = StateT (HashMap k v) m a
type MemoM k v a = MemoMT k v Identity a

runMemoT :: Monad m => MemoMT k v m a -> m a
runMemoT m = evalStateT m HM.empty

runMemo :: MemoM k v a -> a
runMemo = runIdentity . runMemoT

43

For example, we can use memoFix to build a memoizing catamorphism over
our Hash-consed types:

memoCata :: (Traversable f, Hashable (HC f)) =>
(f a -> a) -> HC f -> a

memoCata alg x = runMemo $
memoFix (\rec -> fmap alg . mapM rec . unHC) x

memoCataM :: (Monad m, Traversable f, Hashable (HC f)) =>
(f a -> m a) -> HC f -> m a

memoCataM algM x = runMemoT $
memoFix (\rec -> lift . algM <=< mapM rec . unHC) x

WARNING: this will result in a slowdown if your AST has no common
sub-trees!

44

The Future of FPF
• FPF Lucid

• a new front-end standalone DSL
• more restrictive and easier to use
• central notion of time
• control constructs based around schedules
• Damas-Hindley-Milner type inference with constraints and polymorphic

extensible records

• New Monte Carlo backend

• designed from scratch for massive parallelism
• GPU capable

• New PDE backend

• Generic solver

45

References

[1] S. Frankau, D. Spinellis, N. Nassuphis and C. Burgard, “Going functional
on exotic trades”, 2009

[2] A. Gill, “Type-Safe Observable Sharing in Haskell”, 2009

[3] E. Meijer et al, “Functional Programming with Bananas , Lenses ,
Envelopes and Barbed Wire”, 1991.

[4] R. Lammel and S. Peyton Jones, “Scrap your boilerplate with class :
extensible generic functions”, 2004.

46

