
GIT ESSENTIALS

October 2011

This image is the Linux kernel as visualised by Gource

October 2011

Tim Williams

— Builds that never break

— Work that is always backed-up

— Safe local updating and merging

— Flexibility around adopted workflows

— No single point of failure

— Knows the 'fallacies of distributed computing„

Why Distributed Version Control?

1/19/2013 11:25:46 PM 2010 DB Blue template

1

October 2011

Tim Williams

— You cannot have stable code without branches
 stable lines must be isolated from development lines

— You cannot have code reviews without (some form of) branch
 otherwise you cannot continue to work while waiting for reviews to happen

— For a DVCS, branching is mandatory since every local commit

is a branch that potentially needs merging

— A DVCS is designed to be good at branching and merging

Branching as a process enabler

1/19/2013 11:25:46 PM 2010 DB Blue template

2

October 2011

Tim Williams

— Seems to be where the momentum is

— Already very stable and mature

— Beautifully simple semantic model

— Fast, especially under Linux

— Stable tools, e.g. Eclipse support

— Branch per task is practical

Why GIT?

1/19/2013 11:25:46 PM 2010 DB Blue template

3

October 2011

Tim Williams

— Git is harder to learn than a typical centralised VCS, it has

more concepts and more commands

— Git is extremely flexible, but that demands disciplined

processes and conventions

But...

1/19/2013 11:25:46 PM 2010 DB Blue template

4

October 2011

Tim Williams

It stores three types of data separately:

— content is stored in blob objects

— history is stored in commit objects

— folder structure is stored in tree objects

This allows:

— full merge accounting of non-linear histories

— tracking the history of code, which may

pass through many files

— fast path-limited revision traversal

Git tracks content, not files

1/19/2013 11:25:46 PM 2010 DB Blue template

5

October 2011

Tim Williams

— Git commands such as “git add” and “git rm” work against the

index, which is used to generate the next commit

— Changes to your working tree do not affect the index, changes

are staged using the above commands

— Provides a place to store an unfinished merge, so you can try

various strategies, including hand-editing, to finish it

The Working Tree and Index

1/19/2013 11:25:48 PM 2010 DB Blue template

6

Untracked
Working

tree
Index Commit

git add git add git commit

git reset --hard

October 2011

Tim Williams

— A single, atomic change-set with respect to the previous state

— Represents the entire repository, since we snapshot the index

to create a new tree object representing the repository root

— Represents an entire line of development, since each commit

points to its predecessor

— form a directed-acyclic graph,

when we branch

— self-identifying and secure using

SHA1 hashes

Commits

1/19/2013 11:25:48 PM 2010 DB Blue template

7

October 2011

Tim Williams

There are two types of branches in Git:

— Local branches
represent your branches, use “git branch” to see them. They can be set to track

remote-tracking branches

— Remote a.k.a. “remote-tracking” branches
represent a snapshot of someone else’s branch, use

“git branch -r” to see them and “git fetch” to update them

To create and checkout a local branch that tracks a remote:

git checkout --track -b experiment origin/experiment

Branches

1/19/2013 11:25:48 PM 2010 DB Blue template

8

October 2011

Tim Williams

— Git can have many peers

— these peers, called remotes, can thought of as simple aliases

for long URLs

To add a new remote:

 git remote add github <url>

Remotes

1/19/2013 11:25:48 PM 2010 DB Blue template

9

Project

GitHub

Contributor

GitHub

Contributor

Local

Integrator‟s

Local

push

pull

push

October 2011

Tim Williams

— a ref is a SHA1 hash pointing to a git commit

— named refs are stored in .git/refs according to their fully

qualified names
For example .git/refs/remotes/origin/master contains the (last known) SHA1 commit

of the origins master branch

— special refs exist, e.g. HEAD which means the latest commit on

the current branch

— relative commits can be accessed using a tilda
For example HEAD~2 references two commits before HEAD

— ranges can be specified using double dots
For example HEAD..HEAD~2

— branches and tags are just named refs
Note branch refs can move, tags cannot

Refs

1/19/2013 11:25:48 PM 2010 DB Blue template

10

October 2011

Tim Williams

— first class citizens in Git

— can be used to start new branches or simply mark milestones

in the code's lifetime

— by default, “git tag” creates a simple named ref, essentially a

branch that never moves

— better to create annotated tags using "git tag -a" or signed tags

— use “git describe --tags” to show how many commits you are

past the last or supplied tag

Tags

1/19/2013 11:25:49 PM 2010 DB Blue template

11

October 2011

Tim Williams

— Creating

— git init

— git clone

— Querying

— git status

— git show

— git log

— Updating

— git add

— git commit

— git fetch

— git merge

— git pull

Common commands

1/19/2013 11:25:49 PM 2010 DB Blue template

12

— Undo

— git reset

— git clean

— git revert

— Powertools

— git rebase

— git cherry-pick

— git bisect

— git stash

— git blame

October 2011

Tim Williams

Subversion equivalents

1/19/2013 11:25:49 PM 2010 DB Blue template

13

Old world New world

svn checkout <url> git clone <url>

svn update git pull

svn update -r <rev> git checkout <rev>

svn revert git checkout

svn add/rm/mv git add/rm/mv

svn commit git commit

October 2011

Tim Williams

— Happens whenever we “git pull” or “git merge”

— No Conflicts:

— Git creates a new merge commit,

if the merge is non-trivial.

— If the merge is trivial, ie. just an update,

it Fast-Forwards the commits

— Conflicts:

— changes alter the same line

of the same file

— must be resolved before a

merge commit can be created

Merging

1/19/2013 11:25:52 PM 2010 DB Blue template

14

October 2011

Tim Williams

— Git has pluggable merge strategies and many to choose from

— By default Git uses the 'recursive' strategy to perform a basic three-way

merge. It applies it to whole files, and then to lines within files.

 To do a basic three-way merge, you need three versions of a file. The versions A and B you

want to merge, and a common ancestor O.

We want the file O, plus all the changes made from O to A and from O to B.

Merging

1/19/2013 11:25:52 PM 2010 DB Blue template

15

October 2011

Tim Williams

— Fast-forward (default trivial)

— simply replays the commits onto a common parent

— used, for example, to update a developer's remote copy

— use "--no-ff" if you explicitly want the merge in your history when doing "git pull"

or "git merge"

— Recursive (default non-trivial)

— performs a basic three-way merge, unless there are multiple common

ancestors, in which case it attempts to merge the ancestors and then use the

result as a common base

— Ours

— abandon any conflicting changes in the feature branch, but keep them

in the history

— Subtree

— for merging an independent project into a subdirectory of a superproject

Merging: common strategies

1/19/2013 11:25:52 PM 2010 DB Blue template

16

October 2011

Tim Williams

— a merge (via git pull or git merge) may result in a conflict

— while in a conflicted-merge state, the index holds three

versions of each conflicted file: base, ours and theirs

— the conflicted files in the working tree also contain markers,

showing the conflicted lines

— “git status” will list all the modified files bought in by the non-conflicting

commits. It will also list the conflicted files.

— “git reset --hard” aborts the merge

Merging: Resolving conflicts

1/19/2013 11:25:52 PM 2010 DB Blue template

17

 Auto-merging DemoServer/Java/pom.xml

 CONFLICT (content): Merge conflict in DemoServer/Java/pom.xml

 Auto-merging WebServer/Java/run.bat

 CONFLICT (content): Merge conflict in WebServer/Java/run.bat

 Auto-merging Bandwagon Examples.iws

 CONFLICT (delete/modify): Bandwagon Examples.iws deleted in 682a683d05f763bb246a

 439033e3e1e63ccff7b6 and modified in HEAD. Version HEAD of Bandwagon Examples.iw

 s left in tree.

October 2011

Tim Williams

1. right click a conflicted file

2. select Team -> MergeTool

3. select the merge mode
use HEAD (the last local version) of conflicting files" and click OK

4. the merge editor opens

Merging: Eclipse and EGit

1/19/2013 11:25:52 PM 2010 DB Blue template

18

Ancestor (base)

Working tree version

Version to be merged

October 2011

Tim Williams

— best thought of as re-writing history

— should not be done to commits already published!

— useful for cleaning up a noisy and confusing private history

before publishing

— especially if some bad intermediate commits may cause problems for

tools such as “git bisect”

— the interactive rebase “git rebase -i” can be useful for

squashing a series of recent commits into one bundle for

publishing

Rebasing

1/19/2013 11:25:57 PM 2010 DB Blue template

19

October 2011

Tim Williams

— allows you to "cherry-pick" one or more commits from within an

arbitrary development line

— creates a new commit on top of your current HEAD

— if it cannot apply the change, conflicts are resolved similarly to

“git merge”

— often an alternative to rebase, which can be thought of as a

series of cherry-picks, followed by a branch reset

Cherry picking

1/19/2013 11:26:00 PM 2010 DB Blue template

20

October 2011

Tim Williams

— gitk included with git

— Run using “gitk” or “gitk --all” for all branches

— Eclipse EGit offers similar graph views in the History view
For example, Team -> Show in History

Visualisation

1/19/2013 11:26:00 PM 2010 DB Blue template

21

Merge commit

Common ancestor

October 2011

Tim Williams

— Git doesn‟t record any rename tracking information at commit

time

— Renames are detected using heuristics. To make sure this

works, always commit moves separately from content changes.

— Use “git log --follow <filename>” to view the history of a file

across renames

Renames

1/19/2013 11:26:00 PM 2010 DB Blue template

22

October 2011

Tim Williams

An ideal workflow for moderately sized teams would feature:

— A stable “golden source” repository that developers pull from and

releases are cut from, that always builds

— In-progress work is backed-up remotely

— this includes branches that may never make it into the golden source.

— A Branch-per-task methodology

— made practical by Git's full merge accounting and scalable architecture.

— First class code reviews

— using a collaboration platform like GitHub,

code review is a trivial add-on.

Workflow

1/19/2013 11:26:03 PM 2010 DB Blue template

23

October 2011

Tim Williams

Workflow

1/19/2013 11:26:03 PM 2010 DB Blue template

24

Roles:

─ Developer

─ Reviewer/integrator

October 2011

Tim Williams

— all work should be done on ticket-linked branches

— commit and push regularly, especially after renames

— the person responsible for the pull request should resolve

conflicts should their branch fall behind master

— work is not done and tickets are not closed, until code has at

least made it to stable

Best practice

1/19/2013 11:26:03 PM 2010 DB Blue template

25

October 2011

Tim Williams

1. Set up your configuration:

 git config --global user.name "Tim Williams“

 git config --global user.email tim@timphilipwilliams.com

— Three levels of config: system, global and local to the repository

— You can view your configuration by doing "git config -l“

— On Windows it is worth checking that "core.autocrlf" is set to false

2. Set up ssh keys:

 ssh-keygen -t rsa

— add your keys here %HOME%\.ssh\id_rsa

— private key should really have a password

3. Upload your public key to GitHub

— taking care to avoid copy-paste errors!

Setting up

1/19/2013 11:26:03 PM 2010 DB Blue template

26

October 2011

Tim Williams

— Details of various Git documents and books

— http://git-scm.com/documentation

— Pro Git : the complete book

— http://git-scm.com/book

Resources

1/19/2013 11:34:15 PM 2010 DB Blue template

27

http://git-scm.com/documentation
http://git-scm.com/documentation
http://git-scm.com/documentation
http://git-scm.com/documentation
http://git-scm.com/book
http://git-scm.com/book
http://git-scm.com/book
http://git-scm.com/book

