
rationale, techniques and
lessons learned

Tim Williams | October 2017

An EDSL for KDB/Q

An EDSL for KDB/Q

What is KDB/Q?
KDB/Q is an array processing language used for programming the

proprietary KDB+ columnar database by Kx systems

• KDB is commonly used in the finance industry for

time-series applications
• Q is dynamically typed, famously terse

1

An EDSL for KDB/Q

Problem
We have a significant amount of Haskell logic that needs porting to KDB/Q,

which is made especially difficult by incompatible syntax and semantics*

*We will spare you from having to read much KDB/Q code in this talk!

2

An EDSL for KDB/Q

Solution

• Haskell is expressive enough to enable the composition of Q

programs within Haskell itself, using a (deeply) embedded domain

specific language (EDSL)
• EDSLs should be cheaper to build and maintain than more traditional

approaches to code generation.

We will also apply some Category Theory!

3

EDSL Rationale

• Haskell syntax
• lexical scoping
• standard operator precedence rules

• Choice of semantics
• static types
• referential transparency
• null safety
• IEEE-754 compliant operators
• no expression size limits

4

EDSL Rationale

• The EDSL uses types to document interfaces and

machine-check correctness

• Evaluate Q programs using Haskell or using KDB
• KDB requires a license per machine

• Mix Q programs with Haskell code inside the same file
• invaluable for testing

• A safe and restricted subset of Q
• For example, we can offer termination guarantees

5

EDSL Rationale

An (easy) subset of Q

• The EDSL here is only concerned with composing scalar operations,

which may or may not be applied to bulk data within KDB.

• Giving static types to bulk operations or queries, is a much harder

problem and still an area of ongoing research†

† Modern Haskell is certainly capable of tackling this. For example, giving types to the

relational algebra [1] and implicit lifting of scalar operations into bulk operations using rank

polymorphism [2].

6

Key Features

• The front end syntax has both expressions and statements
• side-effecting primitives are primitive monadic instructions
• differentiate between pure functions and procedures
• pure functions exploited during optimisation

• Both explicit sharing and implicit (recovered) sharing
• affords some manual control
• non-trivial to preserve evaluation semantics in the presence of

side-effects

• No attempt at overloading syntax for shallow/deep polymorphism

7

Examples

The EDSL inherits Haskell’s syntax and operator precedence rules, which

can significantly simplify mathematical expressions:

EDSL
f (x, y, z) = 2*x + 3*y < 4*z

Q
f:{[x; y; z] ((2*x) + (3*y)) < (4*z)};

8

Examples

Haskell’s record syntax makes it easier to construct composite data:

EDSL
toQ Params

{ pCcy = KRW
, pSpread = 0.5
, pLo = 50
, pHi = 80
}

Q
‘pCcy‘pSpread‘pLo‘pHi!(‘KRW;0.5;10f;20f);

9

Examples

Records are declared, which document and guarantee the presence of

fields:

data Result = Result
{ rPrice :: Double
, rDate :: Datetime
}

$deriveView ’’Result

scalePrice :: Q Double -> Q Result -> Q Result
scalePrice x = modL rPriceL (*x) -- Note: x is captured

10

Examples

Sum-types are useful to document and guarantee the handling of options.

Enums are a special-case, which are handled and represented separately:

EDSL
data ABC = A | B | C

f :: Q ABC -> Q Int
f x = switch x [A --> 1

, B --> 2
, C --> 3
]

Q
f:{[x] $[x~‘A; 1; x~‘B; 2; x~‘C; 4; ’impossible]};

11

Examples

Arbitrary sum types are embedded using fold functions generated using

Template Haskell:

data Either a b = Left a | Right b
$deriveElim ’’Either

either
:: (QTy a, QTy b, QTy r)
=> (Q a -> Q r)
-> (Q b -> Q r)
-> Q (Either a b)
-> Q r

either f g e = elim e f g

12

Examples

Sharing can be made explicit, using the letQ primitive:

letQ :: (QTy a, QTy b) => Q a -> (Q a -> Q b) -> Q b

letQ (f x) $ \y ->
y*y ∗

fx

13

Examples

Impure code, such as code that use mutable references, has a monad:

-- | returns 6
impure :: QProg Int
impure = do

r <- newRef 0
mapM_ (f r) [1, 2, 3]
readRef r

where
f :: Q (Ref Int) -> Q Int -> QProg ()
f r x = modifyRef r (+x)

14

Techniques

15

Deep Embeddings

• A deeply embedded DSL yields an abstract-syntax-tree (AST)

upon evaluation
• We can then analyse, optimise and compile the AST as is necessary

{-# LANGUAGE GADTs #-}
data Q :: * -> * where

QVar :: QTy a => Var -> Q a
QAtom :: QTy a => Atom a -> Q a
QLam :: (QTy a, QTy b) => (Q a -> Q b) -> Q (a -> b)
QApp :: (QTy a, QTy b) => Q (a -> b) -> Q a -> Q b
...

16

Overloading

Haskell’s type classes permit expressive adhoc overloading, making it

possible to achieve a deep embedding without too much syntactic noise

instance Num a => Num (Q a) where
(+) x y = QApp (QApp (QAtom PrimAdd) x) y
fromInteger = QAtom . ADbl . fromInteger

instance Fractional a => Fractional (Q a) where
fromRational = QAtom . ADbl . fromRational

17

Overloading

λ> 1 + 2 :: Q Double
QApp (QApp (QAtom PrimAdd) (QAtom 1.0)) (QAtom 2.0)

QApp

QAtom

2.0

QApp

QAtom

1.0

QAtom

PrimAdd

18

Higher-order abstract syntax

• Re-uses abstraction and binding from the host language
• HOAS is useful to reify functions in embedded programs
• GADTs can be used to preserve type information
• Beware of exotic terms‡

{-# LANGUAGE GADTs #-}
data Q :: * -> * where

QLam :: (QTy a, QTy b) => (Q a -> Q b) -> Q (a -> b)
QVar :: QTy a => Id -> Q a -- ^ to convert out of HOAS
...

‡We must not perform case analysis on types used as inputs to a binding function!

19

Sequencing effects

We use a Monad in the EDSL in order to sequence side effects and support

mutable references

type QProg a = Prog Stmt (Q a)

data Stmt :: * -> * where
-- References
NewRef :: Q a -> Stmt (Q (Ref a))
ReadRef :: Q (Ref a) -> Stmt (Q a)
WriteRef :: Q (Ref a) -> Q a -> Stmt (Q ())
...

20

Operational Monad

The Operational package allows us to reify monads, similarly to a Free

Monad, but with better asymptotics [3]

data Prog ins a where
Return :: a -> Prog ins a
(:>>=) :: Prog ins a -> (a -> Prog ins b) -> Prog ins b
instr :: ins (Prog ins) a -> Prog ins a

instance Monad (Prog ins) where
return = Return
(>>=) = :>>=

21

Meta-programming

Meta-programming in the EDSL is achieved just by using functions in the

host language

Q (a -> b) -- ^ embedded function
Q a -> Q b -- ^ meta-function

22

Meta-programming

Lenses derived using template haskell

priceBidL :: Q Price :-> Q Double
resultPriceL :: Q Result :-> Q Price

Lens computations are meta-programs which are computed at staging-time

getL :: (f :-> a) -> f -> a
setL :: (f :-> a) -> a -> f -> f
compose :: (b :-> c) -> (a :-> b) -> (a :-> c)

23

Meta-programming

The Reader monad can be used as a meta-program to thread values

through without any runtime cost

type QProgR r a = ReaderT (Q r) (Prog Stmt) (Q a)

runReaderT :: ReaderT r m a -> r -> m a

24

Dynamic types

• Often need to deal with untyped data at the interface boundaries
• Use a Dynamic wrapper type to contain these untrusted values
• Unpacking the dynamic value forces a runtime type check

data Dynamic

class QTy a => HasDynamic a where
pack :: Q a -> Q Dynamic
unpack :: Q Dynamic -> Q (Maybe a)

25

QuickCheck

• Use QuickCheck to generate and interpret random expressions
• Test for properties that must hold over the results
• Build an evaluator for the DSL and use it to verify the assumed

semantics and compilation output

26

QuickCheck

Using an evaluator and the compiled output, we perform a 2-way

comparison:

EDSL

Q

V

V’

compile

eval

eval

equivalence

27

Generating test expressions

• Generating expressions of arbitrary type difficult
• requires constraint solving

• But very easy to do if we limit the types. For example:
• double arithmetic (with infinities, NaNs and zeros)
• boolean algebra
• list operations
• dictionary operations

28

Embedding Algebraic Data Types

A type class defines which types can be embedded into a Q expression:

class QTy a where
toQ :: a -> Q a

-- An example Q encoding for a sum type
instance QTy a => QTy (Maybe a) where

toQ (Just x) = variant ”Just” (toQ x)
toQ Nothing = variant ”Nothing” unit

-- An example encoding for a record
instance QTy Point where

toQ (Point x y) = record [(”x”, toQ d1)
, (”y”, toQ d2)
]

29

Views

A “View” type class allows us to use pattern matching for product types [4]:

-- | for pattern-matching on tuples and records
class QTy a => View a where

type Rep a
toView :: Q a -> Rep a
fromView :: Rep a -> Q a

This works well when combined with the “ViewPatterns” GHC extension:

swap :: Q (a, b) -> Q (b, a)
swap (toView -> (a, b)) = fromView (b, a)

Template Haskell is used to generate instances for arbitrary records.

30

Eliminators

An “Elim” type class allows us to eliminate sum-types, as one normally

would using case analysis [4]:

-- | for folding/eliminating data-types
class QTy a => Elim a r where

type Eliminator a r
elim :: Q a -> Eliminator a r

The instance for forall a. Maybe a is as follows:

instance (QTy a, QCond r) => Elim (Maybe a) r where
type Eliminator (Maybe a) r = r -> (Q a -> r) -> r
elim ma b f = cond (isNothing ma) b $ f (fromJust ma)

Template Haskell is used to generate instances for arbitrary sum types

31

Closure conversion

Problems

• We need to port a significant amount of Haskell code to the EDSL that

makes heavy use of lexical scoping and closures, which Q does not

support

• Q has expression size limits for branches of a conditional, which is

most easily worked around by eta-expansion and lambda-lifting

Solution

• Transform the AST to remove any lexically captured variables

32

Closure conversion

Luckily, Q does support partial application, so we can employ a very simple

conversion to close all “open” lambdas containing free-variables:

• calculate the free variables bottom-up
• add the captured variables to the parameter lists and partially apply

the additional arguments

33

Closure conversion

We have

f = \x -> \y -> x + y -- ^ not supported in Q

We want

f = \x -> (\x y -> x + y) x -- ^ supported in Q

34

Closure conversion

Problem

• How can we achieve separation-of-concerns without nested folds?
• How can we avoid specifying every case?

-- WARNING: This has quadratic complexity!
closeExpr :: QExpr -> QExpr
closeExpr (QLam vs e) =

let e’ = closeExpr e
vs’ = Set.toList $ freeVars e’ \\ (Set.fromList vs)

in QApply (QLam (vs’ ++ vs) e’) vs’
...
freeVars :: QExpr -> Set Var

35

Solution
Use Functor fixed-points and recursion schemes!

• Add principled structure to our traversals
• Achieve compositional data-types and traversal code
• Avoid boilerplate traversal code using Foldable and Traversable

36

Fixed points of Functors

An idea from category theory which gives:

• data-type generic traversals
• compositional data-types
• especially useful for annotations and

recovering sharing

-- | the least fixpoint of functor f
newtype Fix f = Fix { unFix :: f (Fix f) }

A functor f is a data-type of kind * -> * together with an fmap function.

Fix f ∼= f(f(f(f(f...etc

37

Catamorphism

A catamorphism (cata meaning “downwards”) is a generalisation of the

concept of a fold [5,6]

• models the fundamental pattern of (internal) iteration
• a catamorphism will traverse bottom-up, however top-down or a

combination is possible using a function codomain
• category theory shows us how to define it data-type generically for a

functor fixed-point

cata :: Functor f => (f a -> a) -> Fix f -> a

38

Catamorphism

cata :: Functor f => (f a -> a) -> Fix f -> a
cata alg = alg . fmap (cata alg) . unFix

f (Fix f)

Fix f

f a

a

fmap (cata alg)

Fix

cata alg

alg

39

Closure conversion

Pattern Functor AST

type QExpr = Fix QExprF

data QExprF r
= QVar Var
| QPrim PrimOp
| QAtom Atom
| QLam [Name] r
| QApp r r
| ...

40

Closure conversion

We will use a zygomorphism to factor out the free variable calculation as an

auxiliary algebra

closeExpr :: QExpr -> QExpr
closeExpr = zygo fvsAlg mainAlg

mainAlg :: QExprF (QExpr, Set Var) -> QExpr
fvsAlg :: QExprF (Set Var) -> Set Var

-- | semi-mutual recursion
zygo :: Functor f =>

(f b -> b) -> (f (a, b) -> a) -> Fix f -> a

41

Zygomorphism

A zygomorphism just adds additional structure to a catamorphism

-- | semi-mutual recursion
zygo :: Functor f =>

(f b -> b) -> (f (a, b) -> a) -> Fix f -> a
zygo f g = fst . cata (algZygo f g)

algZygo :: Functor f =>
(f b -> b) ->
(f (a, b) -> a) ->
f (a, b) -> (a, b)

algZygo f g = g &&& f . fmap snd

42

Closure conversion

We have O(n) complexity, separation of concerns and minimal boilerplate

-- | close all lambdas
mainAlg :: QExprF (QExpr, Set Var) -> QExpr
mainAlg (QLam vs (e, fvs)) =

let vs’ = Set.toList $ fvs \\ (Set.fromList vs)
in Fix $ QApply (Fix $ QLam (vs’ ++ vs) e) vs’

mainAlg e = Fix e

-- | gather free variables
fvsAlg :: QExprF (Set Var) -> Set Var
fvsAlg (QVar v) = Set.singleton v
fvsAlg (QLam vs e) = (fold e) \\ (Set.fromList vs)
fvsAlg e = fold e

43

Closure conversion

Problem

• Q has a limit of only 8 function parameters.

Therefore we cannot simply add each captured variable as a new

parameter, we will soon hit this limit

Solution

• Pass and extend a single environment, a linked-list of frames
• Add an environment identifier to each parameter list and partially

apply the functions with an appropriately extended environment
• Rewrite any free variable references to index into this environment

44

Closure conversion

The main algebra now needs to produce a function, which when called with

an initial environment, will traverse top-down passing and extending it as

necessary

type Env = Map Id Path

mainAlg :: QExprF (Env -> QExpr, Set Var) -> Env -> QExpr
mainAlg (QLam vs (ef, fvs)) env =

let (e, envArg) = envExtend vs ef fvs env
in Fix $ QApply (Fix $ QLam (EnvId : vs) e) [envArg]

mainAlg (QVar idn) env
| Just path <- Map.lookup idn env = envElem path

mainAlg e env = Fix $ fmap (($ env) . fst) e

45

Conclusions

• EDSLs are quick to build relative to other code generation techniques
• EDSLs let us take back some control over syntax and semantics
• Model and test any assumed semantics with an evaluator

• quickcheck is invaluable

• Recursion schemes are a principled and effective way to structure

traversals and lessen boilerplate
• It’s very difficult to generate readable code

• especially since most names are generated

46

References

[1] L. Augustsson and M. Agren, “Experience Report: Types for a Relational Algebra

Library”, Proc. 9th Symposium on Haskell, pp. 127-132, 2016.

[2] J. Gibbons, “APLicative Programming with Naperian Functors”, Proc. Work. Type-Driven

Development, pp 13-14, 2016.

[3] https://wiki.haskell.org/Operational

[4] G. Giorgidze, T. Grust, A. Ulrich, and J. Weijers, “Algebraic data types for

language-integrated queries”, Proc. 2013 Work. Data driven Funct. Program. - DDFP ’13,

p. 5, 2013.

[5] J. Gibbons, “Origami programming.”, The Fun of Programming, Palgrave, 2003.

[6] E. Meijer, “Functional Programming with Bananas , Lenses , Envelopes and Barbed

Wire”, 1991.

47

https://wiki.haskell.org/Operational

This presentation will soon be available on the conference website at the

following link:

https://skillsmatter.com/conferences/8522-haskell-exchange-2017#skillscasts

The slides will be available here:

http://www.timphilipwilliams.com/slides/AnEDSLForKDBQ.pdf

48

https://skillsmatter.com/conferences/8522-haskell-exchange-2017#skillscasts
http://www.timphilipwilliams.com/slides/AnEDSLForKDBQ.pdf

